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Abstract
This paper derives a solution to the Navier–Stokes equation by considering
vorticity generated at system boundaries. The result is an explicit expression
for the velocity. The Navier–Stokes equation is reformulated as a divergence
and integrated, giving a tensor equation that splits into a symmetric and a skew-
symmetric part. One equation gives an algebraic system of quadratic equations
involving velocity components. A system of nonlinear partial differential
equations is reduced to algebra. The velocity is then explicitly calculated and
shown to depend on boundary conditions only. This removes the need to solve
the Navier–Stokes equation by a 3D numerical computation, replacing it by
computation of 2D surface integrals over the boundary.

PACS numbers: 47.10.−g, 47.10.−A, 47.10.ab, 47.10.ad

A major obstacle for detailed calculations of fluid flows is the time consuming 3D calculations
characteristic of solving differential equations numerically, or using integral methods involving
the calculation of entire 3D domain integrals. For the latter approach, various methods have
been presented that attempt to reduce the computational task. In the boundary element method
one applies potential theory to lower the dimension of the problem by one order. However, this
property is lost if vorticity is considered. An extended version of the method [1] transforms
local boundary conditions into global conditions integrated over the boundary. The velocity
is divided into a potential and a rotational part. This leads to a system of coupled boundary
integral equations to be solved iteratively. The property of the reduced dimension is preserved.
Other methods, commonly applied to vibration analysis, also transforming domain integrals
into boundary integrals include the dual reciprocity method [2], and the particular integrals
technique [3]. The application of these latter methods [2, 3] has been discussed in [4, 5].

Laboratory experiments indicate the significant role played by the no-slip boundary
condition in the formation of vortex filaments affecting the flow evolution. Recently [6],
detailed studies of vortex filaments in 2D turbulent flows reveal that their influence may have
dramatic effects on the flow, not only in the vicinity of the wall but extending over the full
flow domain.
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It is a common assumption that to describe quantitatively turbulent flows in the presence
of solid boundaries, it is necessary to have a quantitative model of the vorticity creation rate
[7]. Based on this assumption, the boundary vorticity dynamics model has developed [8],
describing the vorticity creation from solid boundaries and the reaction of the created vorticity
to the boundaries. In this model, the velocity field is decomposed into two parts. One part,
derived from a scalar potential, describes the longitudinal compression. The other part, derived
from a vector potential, describes the transverse shearing process.

None of the methods or models listed in the previous paragraphs yields a closed expression
for the velocity in the flow in terms of conditions at the system boundary. Such an expression
is presented in this work. We do not a priori assume any explicit model of vorticity formation,
or that the velocity field may be split into a potential and a rotational part.

From a strictly mathematical point of view, it may not be straightforward how to solve
a set of nonlinear partial differential equations and include boundary conditions. From a
physical point of view, the situation is simpler. The Navier–Stokes equation describes the
acceleration of a fluid subjected to interior forces. We add terms to the equation representing
the external pressure and viscous forces at the boundary. It then describes the acceleration in
a system exposed to interior and external forces. A common procedure then is to integrate the
equation. We have done just that.

The Navier–Stokes is recast in the form of a divergence that is zero, permitting immediate
integration. By invoking symmetry properties, the resulting expression may be partitioned into
two equations that may be solved separately. One equation gives a linear partial differential
equation for the velocity potential, permitting the calculation of a rotational part of the velocity
field. The other equation reduces to a quadratic algebraic equation for components of a velocity
field. These two solutions may be added, giving in a closed form an expression only depending
on externally applied pressure and the value of the velocity and the derivatives of the velocity
at the boundary.

The flow of an incompressible fluid of velocity u(r, t) is governed by the Navier–Stokes
equation (1) and by the equation of continuity (2). These equations are most often formulated
as

ρ∂tu + ρ (u · ∇) u ≡ ρ∂tu + ρω × u + 1
2∇ρu2 = −∇p − µ∇ × ω, (1)

ρ∇ · u = Q(r′, t ′)δ(r − r′)δ(t − t ′). (2)

Here, ω = ∇ × u is the vorticity, p the pressure, ρ the density, µ the viscosity and Q(r′, t ′)
the amount of fluid injected into sources or removed by sinks from the system at a specified
point and time. If the vorticity is considered as a skew-symmetric tensor, ωji = ∂jui − ∂iuj ,
a conjugate variable is the rate of strain, σ , defined from σ ji = ∂jui + ∂iuj . The Navier–
Stokes equation is the law of force where the left-hand side contains the acceleration and the
right-hand side the forces acting in the system. The density and the viscosity will be treated as
constants. It follows from equation (2) that the Helmholtz decomposition applies, the velocity
u is uniquely defined from an rotational part urot determined by a vector potential A, and a
potential part upot determined by a scalar potential φ as

u = urot + upot = ∇ × A + ∇φ. (3)

Here, φ has to satisfy the Laplace equation �φ = 0 if there are no sources and sinks. The
vorticity is determined from the vector potential as ω = ∇(∇ · A) − �A. It is possible to
choose A such that ∇ · A = 0 (see [9], for a discussion on the uniqueness of the Helmholtz
decomposition).

Equation (1) describes the flow in a free space, but contains no information about how to
take into account boundary conditions. We will integrate equation (1) and therefore include
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on its right-hand side the forces acting on the fluid at the boundary. These forces include
pressure applied at inlets and outlets and viscous forces at solid boundaries.

We rewrite equation (2) to describe fluid entering or leaving the system at points rQ on
the boundary

ρ∇ · u(r, t) = 2�(r)

∫ ∫
dSQ · u(rQ, t ′)ρG(r − rQ)δ(t − t ′). (4)

The integration is over all surfaces Q of inlets and outlets where the entrance, or exit, flow
velocity is u(rQ). Here, G is the kernel, or Green’s function, G(r) = (4πr)−1. As we are
considering an incompressible fluid, the system responds instantaneously to any dynamical
change of external pressure or the flow from sources. This justifies the use of a stationary
Green’s function in equation (4) satisfying the Laplace equation �G(r) = −δ(r). This
would give a minus sign to the right-hand side of equation (4). However, another minus sign
enters because the topological direction of the surface by definition is chosen such that the
surface element vector dSQ points away from the system. The factor of 2 enters because when
positioning point sources from equation (2) on a boundary surface, only half the flux will enter
the system, the other half ‘on the other side of the wall’ will contribute to the environment not
included in the system. This circumstance may be explained in more detail by the following
argument.

Suppose F(x, y, z) is a function defined in a 3D space. Then, if one approaches the plane
z = 0 in a direction normal to a point (x, y, 0),

lim
z→±0

∂z

∫ ∫
G(x − x ′, y − y ′, z)F (x ′, y ′) dx ′ dy ′ = ∓1

2
F(x, y). (5)

We rewrite equation (4) as

ρ∂ju
j (r, t) − ∂j ∂

j 2
∫ ∫

dSQ · u(rQ, t ′)ρG(r − rQ)δ(t − t ′) = 0. (6)

Here, we have applied a convention, a summation is to be carried out over identical upper
and lower indices. Next, we multiply equation (6) by the i-component of the velocity. Using
simple derivation rules and applying the fact that the second term of equation (6) is zero except
at inlets and outlets, one arrives at

ρuj∂ju
i = ρ∂j

(
u

j

ju
i
) − ∂j ∂

j 2
∫ ∫

dSQ · u(rQ, t ′)ui(rQ, t ′)ρG(r − rQ)δ(t − t ′). (7)

The left-hand side of equation (7) is identical to the second nonlinear term of equation (1).
We continue by adding to the right-hand side of equation (1) the forces acting on the system
at the boundary in the form of an externally applied pressure at inlets and outlets, and
viscous stress acting at the boundary. Suppose we maintain at a point rQ, belonging to
an inlet or outlet, a pressure p(rQ, t ′) applied in the direction −nQ if nQ is directed from
the fluid. One should then complement equation (1) on the right-hand side with a term
−nQp(rQ, t ′)δ(r − rQ)δ(t − t ′).

The force from viscous stress at the surface element dSB at a point rB on the boundary is
given by the term µ dSB × [∇ ×u(r, t)δ(r−rB)] = µ∇[u(r, t)δ(r−rB) · dSB]−µ[dSB ·
∇]u(r, t)δ(r − rB) = µ dSB · ∇u(r, t)δ(r − rB), an expression defining the dynamic
viscosity µ. The last equality is obtained if the boundary conditions are satisfied. Writing
these two contributions to the right-hand side of equation (1) with the help of Green’s functions,
one arrives at the contribution

∂j

[
∂j 2

∫ ∫
G(r − rQ)p(rQ, t) dSQ − µ∂j 2

∫ ∫
G(r − rB) dSB ·∇u(r = rB, t)

]
, (8)
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where the surface integrals are to be performed over the interior of the system boundary. The
factor of 2 in this equation appears for a reason similar to the factor of 2 in equation (4). One
may now collect terms from equations (7) and (8) by defining the tensors P, S and 	

P ji = −2∂j

∫ ∫
p(rp, t)G(r − rp) dSi

p, (9)

Rji = ∂j

∫ ∫
G(r − rB) dSB · (µ∇ − ρu)ui(rB, t), (10)

	ji = Rji − Rij = εijk	k and Sji = Rji + Rij . (11)

The right-hand side of equation (9) is obtained from the first term inside the bracket of
equation (8) after a partial integration and using the fact that the pressure at the rim of an
opening is finite for viscous flow. The tensor P is diagonal if the pressure gradient is normal
to the system boundary at inlets and outlets. We will assume this is the case. The tensor
	 is skew-symmetric and is related to the amount of vorticity transferred to the system, or
generated, at boundaries. The first relation of equation (11) defines the vector Ω. In the
definition of these tensors, the area of inlets and outlets has been assumed situated at the
system boundary. The trace, the sum of the diagonal elements, of the tensors S and 	, tr(S)

and tr(	), are zero.
Collecting all terms from equations (3), (7) and (8), equation (1) may be rewritten for the

i-component as

∂j [ρ∂tφδij + ρ∂tε
ijkAk + ρuiuj + pδij + µεijkωk + (Sji + P ji + 	ji)δ(t − t ′)] = 0, (12)

where εijk is the completely skew-symmetric Levi-Civita tensor. Equation (12) has the form of
a divergence being zero. Now, as stated after equation (2), the disappearing of the divergence
leads to the existence of potentials. Applying this result to equation (12) leads to an equation
for a second-rank tensor. The expression inside the brackets of equation (12) must be equal
to a second-rank tensor T satisfying ∂jT

ij = ∂iT
ij = 0. That equation may be split into its

symmetric and skew-symmetric parts yielding the two equations

ρ∂tφδij + [ρuiuj + pδji + P ij + Sij ]δ(t − t ′) = T ij , (13)

εijkρ∂tAk − µεijk�Ak + 	jiδ(t − t ′) = εijkBk, (14)

where T is an arbitrary symmetric tensor and B an arbitrary irrotational vector. T and B
appear in analogy with a constant of integration in a one-dimensional analysis. If they cannot
be given a physical interpretation, they may be put equal to zero. Lowering one index and
contracting equation (13) gives the relation

∂tρφD + ρu2 + pD + tr(P ) = 0, (15)

where D is the space dimension of the system. This equation is employed to calculate the
pressure in the flow provided the velocity and the tensors are known. It remains to treat the
case of the non-diagonal elements of equation (13), that is the case i �= j , and equation (14).

The off-diagonal part of equation (13) now reads

ρuiuj + Sij = 0, i �= j, (16)

and has the solution U with components

Ui(r, t) = ±
√

SijSik

ρSjk
, i �= j �= k. (17)

This velocity is, in general, not irrotational.
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Equation (14) is a linear differential equation for the vector potential A. To solve this
equation, employ the integral kernel of the diffusion equation, K(r, t), given in the form

(µ� − ν−1∂t )K(r, t) = −δ(r)δ(νt) ⇒ K(r, t) = exp
(− r2

4νt

)
(4πνt)

D
2

, (18)

where D is the space dimension and ν = µ/ρ is the kinematic viscosity. Multiplied by a
unit vector, K defines a solenoidal vector potential. Vortex models derived from this kind of
potential have been shown to account for the decay of vortex singlets generated in a tank [10].
Models of vortex doublets derived from this kind of vector potential reproduce the energy
spectrum of 2D turbulent flows generated in the laboratory [11].

The solution of equation (14) then reads

A(r, t) = µ−1
∫ t

0
ν dt ′

∫ ∫ ∫
d3x ′K(r − r′, t − t ′)Ω(r′, t ′)

= ∇ ×
∫ t

0
dt ′

∫ ∫
�(r − rB, t − t ′) dSB · (ν∇ − u(rB))u(r = rB, t ′). (19)

The second equality is obtained after a partial integration, applying Stokes’ theorem to an
integral over a closed surface, and an integration over all space. The gradient in the parenthesis
of the integrand of equation (19) describes the vorticity generated at the system boundary, solid
boundaries as well as inlets and outlets. The velocity in the parenthesis of the integrand of
equation (19) describes the vorticity entering the system with bulk flow at inlets and outlets.

The function � is a solution to �(r)�(r − rB, t) = −K(r − rB, t), and is given by
�(r, t) = G(r)erf

(
r√
4νt

)
, where erf is the error function.

The rotational contribution to the internal velocity field from vorticity created at the
boundary, V , may now be determined by taking the rotation of the vector potential of
equation (19)

V (r, t) =
∫ t

0
dt ′

∫ ∫
K(r − rB, t − t ′) dSB · (ν∇ − u(rB))u(rB, t ′). (20)

This velocity field defines a rotational part of the velocity in terms of the externally applied
pressure and the value of the velocity and derivatives of the velocity at boundary points.

To compute the velocity field from equations (17) and (20), one needs information about
the velocity and velocity gradients everywhere at the boundary. One way to obtain this
information is to find a solution to the equation of continuity, equation (2) satisfying the no-
slip boundary conditions, the velocity at the boundary is zero. One may proceed as follows.
The bulk flow between inlets and outlets in an infinite space is given by the velocity field

vQ(r, t) = 2
∫ ∫

dSQ · ∇(r)G(r − rQ)v(rQ, t). (21)

Here, we have employed a relation of the following kind. On the boundary, the velocity normal
to the surface, vn, and the tangential velocity, vt , are given by vn(rB, t) = nB(nB · vQ(rB, t))

and vt (rB, t) = v(rB, t) − nB(nB · vQ(rB, t)), respectively. Here, nB is a unit vector
normal to the boundary surface at rB oriented in a direction from the fluid. The appearance
of the factor of 2 has been explained above in the paragraph following equation (4). One
may now modify equation (21) to get a velocity field satisfying the boundary conditions by
subtracting the normal and tangential velocities by using the integral kernels G and K,

v(r, t) = vQ(r, t) − 2
∫ ∫

dSB · ∇(r)G(r − rB)vn(rB, t)

− 2
∫ t

0
ν dt ′

∫ ∫
dSB · ∇(r)K(r − rB, t − t ′)vt (rB, t ′). (22)
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The Green’s stationary function G has been employed instead of the kernel K in the
term treating the normal velocity component for the same reasons as those stated after
equation (4) above. The fact that the normal component is zero is a consequence of the
equation of continuity. As we are treating the case of an incompressible fluid, there is no time
dependence in this equation.

The velocity field v here describes the bulk flow and the rotational part of the velocity
field created at boundaries. One may note that the last term of equation (22) is twice the
expression of equation (20) if one identifies the velocities of the integrands. A factor of 2
is due to the split of the tensor R into symmetric and skew-symmetric tensors, 	 and S. The
expression of equation (20) may now be determined from the last term of equation (22) that
is, from information based on the equation of continuity and the location of boundaries, inlets
and outlets.

The part of the velocity field that may still be lacking is the one stemming from vortex
doublet formation, two counter-rotating vortex singlets, as observed in pipe flow subjected to
an external disturbance [12] or in vortex rings just before transition towards turbulence [13].
No net vorticity can be created in the interior, but nothing prevents the formation of vortex
doublets in a shearing flow. This may be coupled to another feature of the Navier–Stokes
equation.

It is a partial differential equation of the parabolic type, containing only single derivative
terms with respect to time. Information then travels with an infinite speed. To describe
dynamical features caused by local pressure fluctuations, the flow equations should be
complemented by terms containing second derivatives with respect to time, in effect
transforming them to wave equations. It would not change any of the above results obtained
prior to equation (14). This equation would be complemented by a term representing a second
time derivative of the vector potential, a term µc−2∂2

t may be added to the left hand side of
equation (14). Here, c is a reference propagation velocity, for example the velocity of sound
in a medium. It will result in an integral kernel not just decaying exponentially with time, but
also being capable of reproducing an oscillatory behaviour. The Green’s function in this case
may be written as

G(x) = − 1

(2π)4

∫
CR

d3k dω
ei(k · r−ωt)

k2 − ω2/c2 − iω/ν
, (23)

where the integration path in the ω-plane is along the real axis and both poles are in the
lower half-plane if ω > 0. This Green’s function may be recast using Bessel functions [14].
Equation (20) is still valid if one replaces the integral kernal K by the Green’s function of
equation (23).

It has been demonstrated that the flow equations by integration may be reduced to one
linear partial differential equation and one algebraic equation quadratic in the velocity. This
permits the computation of the velocity field and the pressure in the flow in terms of the
externally applied pressure and the value of the velocity and velocity gradients at boundary
points.
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